Thursday, January 19, 2017

integral using substitution and then integration by parts

integral using substitution and then integration by parts

integral of [1 / (x^4)][sqrt( 1 + (x^2))][ log( 1 + (x^2)) - 2log( x)]

first simplify using property of logarithms

take x^2 common from the sqrt term obtain [1+1/(x^2)] and try to get the same term inside the log expression

cancel off the x to get 1 /[x^3]   then use substitution

then use integration by parts with log(t) as the first function



formulae on integration
 
PAGE 1 BASIC INTEGRATION

PAGE 2 INTEGRATION BY SUBSTITUTION

 PAGE 3 INTEGRATION BY COMPLETION OF SQUARES

PAGE 4 INTEGRATION BY PARTS

PAGE 5 INTEGRATION BY MANIPULATION OF NUMERATOR IN TERMS OF DENOMINATOR


PAGE 6 INTEGRATION USING PARTIAL FRACTIONS

disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work





No comments:

Post a Comment

please leave your comments