Tuesday, August 11, 2020

evaluate { (sqrt(3) + sqrt(2))^6 } - { (sqrt(3) - sqrt(2))^6 }

 ncert cbse chapter 8 binomial theorem miscellaneous exercise 

5.evaluate { (sqrt(3) + sqrt(2))^6 } - { (sqrt(3) - sqrt(2))^6 }

 (a+b)^6 = {a^6} + C(6,1){a^5}{b} +C(6,2){a^4}{b^2}+C(6,3){a^3}{b^3} +C(6,4){a^2}{b^4}++C(6,5){a^1}{b^5}+C(6,6)(b)^6

 C(6,1) = 6 =C(6,5)

C(6,2)=15=C(6,4)

C(6,3)=20

C(6,6)=1

(a+b)^6 = {a^6} + 6{a^5}{b} +15{a^4}{b^2}+20{a^3}{b^3} +15{a^2}{b^4}+6{a^1}{b^5}+(b)^6

 (a-b)^6 = {a^6} - 6{a^5}{b} +15{a^4}{b^2} - 20{a^3}{b^3} +15{a^2}{b^4}- 6{a^1}{b^5}+(b)^6

adding the two equations

{ (a+b)^6} - {(a-b)^6} =

2[6{a^5}{b} +20{a^3}{b^3}+ 6{a^1}{b^5} ]

a=sqrt(3)

b=sqrt(2)


{ (sqrt(3) + sqrt(2))^6 } - { (sqrt(3) - sqrt(2))^6 }

= 2[6*{(sqrt(3))^5}{(sqrt(2))} +20{(sqrt(3))^3}{(sqrt(2))^3}+6{(sqrt(3))^1}{(sqrt(2))^5} ]

=2[54+120+24 ] {sqrt(6)}

=396*sqrt(6)

chapter 8 binomial theorem miscellaneous exercise

 1.Find a , b and n in the expansion of (a+b)^n if the first three terms in the expansion are 729, 7290, 30375

solution

 

2.  Find a if the coefficients of (x^2)  & (x^3) in the expansion of {(3+ax)^9} are equal 

solution

  3.find the coefficient of {x^5} in the expansion of{(1+2x)^6}{(1-x)^7}

solution

 

5.evaluate { (sqrt(3) + sqrt(2))^6 } - { (sqrt(3) - sqrt(2))^6 }

solution 

disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks  using tracking cookies

 

No comments:

Post a Comment

please leave your comments