10th cbse mathematics chapter 3 pair of linear equations in two variables optional exercise 3.7
5. In a ∆ ABC, ∠ C = 3 ∠ B = 2 (∠ A + ∠ B). Find the three angles.
given C = 3B =2(A+B) --------------------(1)
using first and last expression
2(A+B) =C
or A+B = C/2---------------(2)
using angle sum property of triangle
A+B+C = 180 degrees
(A+B) +C = 180
using (2)
(C/2) + C = 180
(3C/2) = 180
C = 180*2/3
C = 120 degrees -----------------(3)
using (3) and the first two expressions of (1)
3B = C
3B = 120
B = 120/3
B=40 degrees----------------------(4)
using (3), (4) in (2)
A+B = C/2
A + 40 = 120/2
A=60-40
A = 20 degrees
Solve the following pair of linear equations:
px + qy = p – q
qx – py = p + q
using elimination method
eliminating x
px + qy = p – q -------------------(1) *q
qx – py = p + q -------------------(2) *p
pq x + (q^2) y = pq - (q^2)
pq x - (p^2) y = (p^2) + pq
-----------------------------------------------------------subtracting
[(q^2) +(p^2) ] y = {- [ (q^2) + (p^2) ] }
y = {- [ (q^2) + (p^2) ] } / [(q^2) +(p^2) ]
y = (-1)
substitute y = (-1) in qx – py = p + q
qx -p(-1) = p+q
qx+p = p+q
qx = q
x =q/q
x=1
=================================================
ncert cbse 10th mathematics chapter 3 optional exercise 3.7
The ages of two friends Ani and Biju differ by 3 years. Ani’s father is twice as old as Ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Ani’s father differ by 30 years. Find the ages of Ani and Biju
2. One says, “Give me a hundred, friend! I shall then become twice as rich as you”. The other replies, “If you give me ten, I shall be six times as rich as you”. Tell me what is the amount of their (respective) capital?
3. A train covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And, if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find the distance covered by the train.
4. The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.
5. In a ∆ ABC, ∠ C = 3 ∠ B = 2 (∠ A + ∠ B). Find the three angles.
Solve the following pair of linear equations:
px + qy = p – q
qx – py = p + q
ncert cbse 10th mathematics chapter 2 optional exercise
If the zeroes of the polynomial (x^3) – 3(x^2) + x + 1 are a – b, a, a + b, find a and b.
solution
2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively
solution
4. If two zeroes of the polynomial (x^4) – 6(x^3) – 26(x^2) + 138x – 35 are
[2 ±sqrt(3) ] , find other zeroes
solution
5. If the polynomial (x^4) – 6(x^3) + 16(x^2) – 25x + 10 is divided by another polynomial (x^2) – 2x + k, the remainder comes out to be x + a, find k and a
solution
exercise 2.3
3. obtain all other zeroes of 3(x^4)+6(x^3)-2(x^2)-10x-5 if two of its zeroes are sqrt(5/3) and [sqrt(5/3)]
solution
4. On dividing (x^3) – 3(x^2) + x + 2 by a polynomial g(x), the quotient and remainder were x – 2
and –2x + 4, respectively. Find g(x).
solution
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks and other organizations using tracking cookie and / or using other means
No comments:
Post a Comment
please leave your comments