Monday, October 12, 2020

obtain all other zeroes of 3(x^4)+6(x^3)-2(x^2)-10x-5 if two of its zeroes are sqrt(5/3) and [sqrt(5/3)]

ncert cbse 10th chapter 2  exercise 2.3

3. obtain all other zeroes of 3(x^4)+6(x^3)-2(x^2)-10x-5 if two of its zeroes are sqrt(5/3) and [sqrt(5/3)]

factors are

[x-sqrt(5/3)][x-sqrt(5/3)] = [(x^2) - (5/3)]=(1/3) [3(x^2) -5]

now divide the given expression 3(x^4)+6(x^3)-2(x^2)-10x-5 with [3(x^2) -5]

using long division

                           (x^2) +2x +1                                

                       ---------------------------------------------------------------------------

3(x^2)+0x -5 |  3(x^4)+6(x^3)- 2(x^2) - 10x  -5 

                      |  3(x^4)+0(x^3) -5(x^2)

                      -------------------------------------------------------------------

                     |              6(x^3) +3(x^2)- 10x 

                     |              6(x^3) +0(x^2) - 10x

                      -----------------------------------------------------------------

                    |                            3(x^2) +0x -5

                    |                             3(x^2) +0x -5

                    -------------------------------------------------------------

                   |                                        0   

 
 
 
 
 
 
 
we get the quotient as  (x^2) +2x +1      
on factoring we get (x+1)(x+1) whose zeroes are (-1) and (-1)
 
4. On dividing (x^3) – 3(x^2) + x + 2 by a polynomial g(x), the quotient and remainder were x – 2
and –2x + 4, respectively. Find g(x). 
 
let p(x)  = (x^3) – 3(x^2) + x + 2
quotient =q(x)  = (x-2)
remainder r(x) = (-2x+4)

p(x) = g(x)*q(x) +r(x)

g(x) = [p(x) - r(x)] / [q(x)]

g(x) = [{(x^3) – 3(x^2) + x + 2} - {(-2x+4)}] / [(x-2)]


g(x) = [( x^3) – 3(x^2) +3x – 2 ] / [x-2]

using long division

g(x) =  (x^2) -1x+1
 




=================================================

  ncert cbse 10th  mathematics chapter 2 optional exercise
 If the zeroes of the polynomial (x^3) – 3(x^2) + x + 1 are a – b, a, a + b, find a and b.
solution
 
2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively
solution



4. If two zeroes of the polynomial (x^4) – 6(x^3) – 26(x^2) + 138x – 35 are 
 [2 ±sqrt(3) ] , find other zeroes

 solution
 
5. If the polynomial (x^4) – 6(x^3) + 16(x^2) – 25x + 10 is divided by another polynomial (x^2) – 2x + k, the remainder comes out to be x + a, find k and a
solution  
 
exercise 2.3
 

3. obtain all other zeroes of 3(x^4)+6(x^3)-2(x^2)-10x-5 if two of its zeroes are sqrt(5/3) and [sqrt(5/3)]
solution
 
4. On dividing (x^3) – 3(x^2) + x + 2 by a polynomial g(x), the quotient and remainder were x – 2
and –2x + 4, respectively. Find g(x). 
  

solution
 
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks and other organizations using tracking cookie and / or using other means  


 


No comments:

Post a Comment

please leave your comments