If A+B=pi/4 show that [1+tan A][1+tanB]=2 or [1+cotA][1+cotB]=2cotAcotB
Given A+B=pi/4 or 45 degrees
tale tan on both sides
tan(A+B)=tan(pi/4)
using trigonometric formulae and standard values
{tanA+tanB} / {1-tanAtanB} =1
or
tanA +tanB =1 -tanAtanB
tanA +tanB +tanAtanB = 1
add 1 on both sides
1+tanA +tanB +tanAtanB = 1+1
1+tanA+tanB +tanAtanB = 2
factorise
1(1+tanA)+tanB(1+tanA)=2
[1+tan A][1+tanB]=2
change tanA =1 / cotA and tanB=1 /cotB in the above result and simplify to get the other expression
disclaimer:
There is no guarantee about the data/information on this site. You use
the data/information at your own risk. You use the advertisements
displayed on this page at your own risk.We are not responsible for the
content of external internet sites. Some of the links may not work.
Your internet usage may be tracked by the advertising networks and other organizations using
tracking cookie and / or using other means.
No comments:
Post a Comment
please leave your comments