Wednesday, May 8, 2024

If A+B=pi/4 show that [1+tan A][1+tanB]=2 or [1+cotA][1+cotB]=2cotAcotB

If A+B=pi/4 show that [1+tan A][1+tanB]=2  or  [1+cotA][1+cotB]=2cotAcotB

Given A+B=pi/4  or 45 degrees

 


tale tan on both sides

tan(A+B)=tan(pi/4)

using trigonometric formulae and standard values

{tanA+tanB} / {1-tanAtanB} =1

or

tanA +tanB =1 -tanAtanB


tanA +tanB +tanAtanB = 1


add 1 on both sides


1+tanA +tanB +tanAtanB = 1+1


1+tanA+tanB +tanAtanB = 2

factorise

1(1+tanA)+tanB(1+tanA)=2

 

  [1+tan A][1+tanB]=2


change tanA =1 / cotA  and tanB=1 /cotB in the above result and simplify to get the other expression


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks and other organizations using tracking cookie and / or using other means.

No comments:

Post a Comment

please leave your comments