cbse 11th trigonometry exercise 3.3
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
using trigonometry formula trigonometry identities
use the formula cos2x = 1-2(sinx)^2 with x replaced by (2x)
and then use
sin2x = 2 sinx cosx
LHS = cos4x = cos[2(2x)]
= 1-2[ sin(2x) ]^2
= 1 - 2[ 2 sinx cosx ]^2
= 1 -8[(sinx)^2][(cosx)^2] = RHS
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
using trigonometry formula trigonometry identities
cos3x = 4[ (cosx)^3] - 3[ cosx ] with x replaced by 2x
and then use cos2x = 2 [(cosx)^2] - 1
cos6x = cos[3(2x)] = 4[ (cos2x)^3] - 3[ cos2x ]
=4{ [ 2 [(cosx)^2] - 1 ] ^3} - 3{ 2 [(cosx)^2] - 1 }
using the identity for (a-b)^3 = (a^3) -3(a^2)b +3 a(b^2) - (b^3)
=4{ 8 [(cosx)^6] - 12[(cosx)^4] + 6[(cosx)^2] - 1 } -3{ 2 [(cosx)^2] - 1 }
= 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1 on simplification
3.3
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
miscellaneous
1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution
2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0
solution
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
solution
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
solution
5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x
solution
6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x
solution
7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution
disclaimer:
There is no guarantee about the data/information on
this site. You use the data/information at your own risk. You use the
advertisements displayed on this page at your own risk.We are not
responsible for the content of external internet sites. Some of the
links may not work
No comments:
Post a Comment
please leave your comments