auto ad

Sunday, July 19, 2020

cbse 11th trigonometry exercise 3.3

cbse 11th trigonometry exercise 3.3

24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]

using trigonometry formula trigonometry identities


use the formula cos2x = 1-2(sinx)^2 with x replaced by (2x)
and then use
sin2x = 2 sinx cosx


LHS = cos4x = cos[2(2x)]

= 1-2[ sin(2x) ]^2

= 1 - 2[ 2 sinx cosx ]^2

= 1 -8[(sinx)^2][(cosx)^2] = RHS


25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1

using trigonometry formula trigonometry identities

cos3x = 4[ (cosx)^3] - 3[ cosx ] with x replaced by 2x

and then use  cos2x = 2 [(cosx)^2] - 1

cos6x = cos[3(2x)] =  4[ (cos2x)^3] - 3[ cos2x ]

=4{ [ 2 [(cosx)^2] - 1 ] ^3} - 3{ 2 [(cosx)^2] - 1 }

using the identity for (a-b)^3 = (a^3) -3(a^2)b +3 a(b^2) - (b^3)

=4{ 8  [(cosx)^6]  - 12[(cosx)^4] + 6[(cosx)^2] - 1 } -3{ 2 [(cosx)^2] - 1 }

= 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1  on simplification




3.3

24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution 


miscellaneous

1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution 

2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0

solution

3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2

solution

4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2

solution 




5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x

solution

6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x

solution


7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution




disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work 

No comments:

Post a Comment

please leave your comments