exercise 3.3 ncert trigonometry cbse 11th
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
using trigonometry formula trigonometry identities
sinx - siny =2cos[(x+y)/2] sin [(x-y)/2] in numerator
(cosx)^2 - (sinx)^2 = cos2x in denominator
LHS = [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] introducing (-1) to change the
order in both numerator and denominator
=[sin3x - sinx] / [ (cosx)^2 - (sinx)^2 ]
= [2cos(4x/2) sin(2x/2)] / [cos2x]
= [2cos(2x) sin(x)] / [cos2x]
= 2 sinx = RHS
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
using trigonometry formula trigonometry identities
tan2x = { 2 tanx } / { 1 - [(tanx)^2]}
Replace x with 2x
LHS = tan4x = tan{2(2x)}
= { 2 tan2x } / { 1 - [(tan2x)^2]} again using the same formula
={ 2[{ 2 tanx } / { 1 - [(tanx)^2]}] }/ { 1 -[{ 2 tanx } / { 1 - [(tanx)^2]}]^2 }
expand using identity for (a-b)^2 in denominator . . .
= { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
3.3
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution
22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
solution
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
miscellaneous
1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution
2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0
solution
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
solution
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
solution
5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x
solution
6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x
solution
7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments