Monday, July 20, 2020

exercise 3.3 ncert trigonometry

exercise 3.3 ncert trigonometry cbse 11th

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx

using trigonometry formula trigonometry identities

sinx - siny =2cos[(x+y)/2] sin [(x-y)/2] in numerator

(cosx)^2 - (sinx)^2 = cos2x in denominator


LHS = [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] introducing (-1) to change the
order in both numerator and denominator

=[sin3x - sinx] / [ (cosx)^2 - (sinx)^2 ]

= [2cos(4x/2) sin(2x/2)]  / [cos2x]

= [2cos(2x) sin(x)]  / [cos2x]

= 2 sinx = RHS





23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}

using trigonometry formula trigonometry identities

tan2x = { 2 tanx }  / { 1 - [(tanx)^2]}
Replace x with 2x

LHS = tan4x =  tan{2(2x)}

= { 2 tan2x }  / { 1 - [(tan2x)^2]} again using the same formula

={ 2[{ 2 tanx }  / { 1 - [(tanx)^2]}] }/ { 1 -[{ 2 tanx }  / { 1 - [(tanx)^2]}]^2 }

expand using identity for (a-b)^2 in denominator . . .

= { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}




3.3

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution 


miscellaneous

1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution 

2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0

solution

3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2

solution

4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2

solution 




5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x

solution

6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x

solution


7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution




disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work  

No comments:

Post a Comment

please leave your comments