trigonometry problem on ncert cbse 11th miscellaneous exercise
Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
using the formula 2cosxcosy = cos(x+y)+cos(x-y)
trigonometry identities
LHS= cos[(pi/13) +(9pi/13)]+cos[(pi/13) -(9pi/13)]+cos (3pi/13)+cos(5pi/13)
= cos (10pi/13) + cos(-8pi/13) +cos (3pi/13)+cos(5pi/13)
= cos (10pi/13) + cos(8pi/13) +cos (3pi/13)+cos(5pi/13) because cos(-x)=cosx
= cos[pi - (3pi/13)] +cos[pi - (5pi/13)]+cos (3pi/13)+cos(5pi/13)
= -cos (3pi/13)- cos(5pi/13)+cos (3pi/13)+cos(5pi/13) because cos(pi-x)= -cosx
= 0
1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution
2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0
solution
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
solution
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
solution
5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x
solution
disclaimer:
There is no guarantee about the data/information on
this site. You use the data/information at your own risk. You use the
advertisements displayed on this page at your own risk.We are not
responsible for the content of external internet sites. Some of the
links may not work
No comments:
Post a Comment
please leave your comments