auto ad

Tuesday, July 21, 2020

exercise 3.3 ncert cbse trigonometry 21

exercise 3.3 ncert cbse trigonometry 21

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x

using trigonometry formula trigonometry identities

sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]

cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]

after grouping terms with 4x and 2x

LHS = [(cos4x+cos2x)+cos3x]/[(sin4x+sin2x)+sin3x]

={2cos(6x/2)cos(2x/2)+cos3x} / {2sin(6x/2)cos(2x/2) + sin3x}

={2cos3xcosx+cos3x} / {2sin3xcosx+sin3x}

={cos3x[2cosx+1]} /{sin3x[2cosx+1]}

=cos3x / sin3x

=cot3x = RHS





3.3

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution 


miscellaneous

1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution 

2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0

solution

3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2

solution

4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2

solution 




5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x

solution

6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x

solution


7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution




disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work 

No comments:

Post a Comment

please leave your comments