auto ad

Thursday, July 23, 2020

exercise 3.3 ncert trigonometry 12

exercise 3.3 ncert trigonometry 12

12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x

using trigonometry formula trigonometry identities

sinx - siny =2cos[(x+y)/2] sin [(x-y)/2]

sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]

finally use 2sinxcosx  = sin2x

Factorise and then apply the identities

LHS = {sin6x + sin4x } {sin6x - sin4x}

={2sin(10x/2)cos(2x/2)}{2cos(10x/2)sin(2x/2)}

={2sin5xcosx}{2cos5xsinx}

={ 2sinxcosx}{2sin5xcos5x} on regrouping

= {sin2x} {sin10x} using sin2x formula

=RHS

13.(cos2x)^2  - (cos6x)^2 = sin4x sin8x

using trigonometry formula trigonometry identities

cosx - cosy = -2sin[(x+y)/2] sin[(x-y)/2]

cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]

finally use 2sinxcosx  = sin2x

LHS =(cos2x)^2  - (cos6x)^2

={cos2x+cos6x} {cos2x-cos6x}

= { -2sin(8x/2)sin(-4x/2)} {2cos(8x/2)cos(-4x/2)}

= {-2sin4xsin(-2x)}{2cos4xcos(-2x)} {using sin(-x)= -sinx and cos(-x)=cosx}

={-2sin4x[-sin2x]}{2cos4xcos2x}

={2sin2xcos2x}{2sin4xcos4x} on regrouping

=sin4xsin8x

=RHS.
 
3.3

12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x
solution

13.(cos2x)^2  - (cos6x)^2 = sin4x sin8x
 solution

17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution

19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work 

No comments:

Post a Comment

please leave your comments