auto ad

Wednesday, July 22, 2020

ncert 11th cbse trigonometry exercise 3.3 question16

ncert 11th cbse trigonometry exercise 3.3 question16


16.Prove that [cos9x -cos5x] / [sin17x - sin3x ] = -sin2x / cos10x

using trigonometry formula trigonometry identities

cosx - cosy = -2sin[(x+y)/2] sin[(x-y)/2]

sinx - siny =2cos[(x+y)/2] sin [(x-y)/2]

LHS = [cos9x -cos5x] / [sin17x - sin3x ]

={ -2sin(14x/2) sin(4x/2) } / { 2cos(20x/2)sin(14x/2) }

= {-2sin7xsin2x} / {2cos10x sin7x}

=  (-sin2x) /cos10x

=RHS

18. Prove that [sinx -siny] / [cosx +cosy] = tan[(x-y)/2]

using trigonometry formula trigonometry identities

cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]

sinx - siny =2cos[(x+y)/2] sin [(x-y)/2]

LHS = [sinx -siny] / [cosx +cosy]

={2cos[(x+y)/2] sin [(x-y)/2]} /{2cos[(x+y)/2] cos[(x-y)/2]}

={sin [(x-y)/2]} / { cos[(x-y)/2]}

=tan[(x-y)/2]

=RHS




3.3

16.Prove that [cos9x -cos5x] / [sin17x - sin3x ] = -sin2x / cos10x
solution

17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution

18. Prove that [sinx -siny] / [cosx +cosy] = tan[(x-y)/2]
solution


19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work


No comments:

Post a Comment

please leave your comments