auto ad

Friday, July 24, 2020

cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx

cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx
ncert 11th trigonometry, exercise 3.3

11. prove that cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx

using trigonometry formula trigonometry identities
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]

LHS = cos[(3pi/4)+x] - cos[(3pi/4)-x]

=2cos[2(3pi/4)/2] cos[2x/2]

=2cos[(3pi/4)] cosx

=2{-1 /(-sqrt(2)) } cosx   [cosx is negative in second quadrant]

= (-sqrt(2))sinx

=RHS

10. prove that

sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx

using trigonometry formula trigonometry identities
cosAcosB +sinAsinB = cos(A-B)

A =(n+2)x
B=(n+1)x


LHS =  sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x]

=cos[A-B] FORM

=cos[(n+2)x - (n+1)x ]

=cosx =RHS


6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)

using trigonometry formula trigonometry identities
cosAcosB - sinAsinB = cos(A+B)

A= [(pi/4)-x]
B= [(pi/4)-y]

LHS =  cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y]

= cos[A+B] form

 = cos[[(pi/4)-x]+[(pi/4)-y]]

=cos[ 2(pi/4)-(x+y)]

=cos[ (pi/2)-(x+y)]

=sin[x+y] = RHS  using cos [ (pi/2)-A] =sinA






3.3

6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)
 solution

10. prove that sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx
 solution

11. prove that cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx

12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x
solution

13.(cos2x)^2  - (cos6x)^2 = sin4x sin8x
 solution

14. Prove that sin2x+2sin4x+sin6x = 4[(cosx)^2]sin4x
solution

15.prove that cot4x[sin5x+sin3x]=cotx[sin5x-sin3x]
 solution

16.Prove that [cos9x -cos5x] / [sin17x - sin3x ] = -sin2x / cos10x
solution

17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution

18. Prove that [sinx -siny] / [cosx +cosy] = tan[(x-y)/2]
solution

19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work


No comments:

Post a Comment

please leave your comments