exercise 3.3 ncert trigonometry question 17 and 19
17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
using trigonometry formula trigonometry identities
sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
LHS =[sin5x + sin3x] / [cos5x+cos3x]
=[2sin(8x/2)cos(2x/2)] / [2cos(8x/2)cos(2x/2)]
= [2sin4xcosx]/[2cos4xcosx]
=sin4x/cos4x
=tan4x
19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
using trigonometry formula trigonometry identities
sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
after rearrangement, after interchanging the terms to make the bigger angle first
LHS = [sinx + sin3x] / [cosx+cos3x]
=[sin3x + sinx] / [cos3x+cosx]
=[2sin(4x/2)cos(2x/2)] / [2cos(4x/2)cos(2x/2)]
=[2sin2xcosx] / [2cos2xcosx]
=sin2x/cos2x
=tan2x
=RHS
3.3
17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution
19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution
21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution
22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
solution
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
disclaimer:
There is no guarantee about the data/information on this site. You use
the data/information at your own risk. You use the advertisements
displayed on this page at your own risk.We are not responsible for the
content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments