auto ad

Monday, July 20, 2020

cbse exercise 3.3 trigonometry problems

cbse exercise 3.3 trigonometry problems

22. Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1

using trigonometry formula trigonometry identities

tan(A+B) = [ tanA + tanB ] / [1-tanAtanB]
and then change [1 / tanx] = cotx

the angles used are x , 2x ,3x

So we connect them using  the relation

3x = x + 2x

take tan on both sides

tan3x = tan( x + 2x )

tan3x = [ tanx + tan2x ]  / [ 1 - tanx tan2x ]

rearranging

[ 1 - tanx tan2x ] (tan3x) = [ tanx + tan2x ]

simplifying

tan3x - tanx tan2x tan3x =[ tanx + tan2x ]

tan3x - tan2x - tanx  = tanx tan2x tan3x

divide each term by  tanx tan2x tan3x

{ 1/[tan2x tanx] }  - { 1 / [tan2x tan3x] } -{ 1/ [tan3x tanx]} =1

using [1 / tanx] = cot x

we get,
 cotx cot2x -cot2xcot3x-cot3xcotx = 1


23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}

using trigonometry formula trigonometry identities

tan2x = { 2 tanx }  / { 1 - [(tanx)^2]}
Replace x with 2x

LHS = tan4x =  tan{2(2x)}

= { 2 tan2x }  / { 1 - [(tan2x)^2]} again using the same formula

={ 2[{ 2 tanx }  / { 1 - [(tanx)^2]}] }/ { 1 -[{ 2 tanx }  / { 1 - [(tanx)^2]}]^2 }

expand using identity for (a-b)^2 in denominator . . .

= { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}




3.3

22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution 


miscellaneous

1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution 

2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0

solution

3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2

solution

4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2

solution 




5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x

solution

6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x

solution


7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution




disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work  




No comments:

Post a Comment

please leave your comments