11th cbse trigonometry miscellaneous exercise question 3
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
using the trigonometry formulae
cosx + cosy = 2cos[(x+y)/2] cos[(x-y)/2]
sinx - siny =2cos[(x+y)/2] sin [(x-y)/2]
LHS = { 2cos[(x+y)/2] cos[(x-y)/2] }^2 + {2cos[(x+y)/2] sin [(x-y)/2]}^2
taking common factor out
= 4{ cos[(x+y)/2] }^2 [{ cos[(x-y)/2] }^2 + { sin[(x-y)/2] }^2 ]
= 4{ cos[(x+y)/2] }^2 [1]
=4{ cos[(x+y)/2] }^2 = RHS.
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
using trigonometry identity
cosx - cosy = -2sin[(x+y)/2] sin[(x-y)/2]
sinx - siny =2cos[(x+y)/2] sin [(x-y)/2]
LHS = {- 2sin[(x+y)/2] sin[(x-y)/2] }^2 + {2cos[(x+y)/2] sin [(x-y)/2]}^2
= 4 { sin[(x-y)/2] }^2 [{ sin[(x+y)/2] }^2 + { cos[(x-y)/2] }^2 ]
= 4 { sin[(x-y)/2] }^2 [ 1 ]
= 4 { sin[(x-y)/2] }^2
1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution
2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0
solution
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
solution
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
solution
5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x
solution
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments