exercise 3.3 ncert trigonometry 12
12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x
sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]
finally use 2sinxcosx = sin2x
Factorise and then apply the identities
LHS = {sin6x + sin4x } {sin6x - sin4x}
={2sin(10x/2)cos(2x/2)}{2cos(10x/2)sin(2x/2)}
={2sin5xcosx}{2cos5xsinx}
={ 2sinxcosx}{2sin5xcos5x} on regrouping
= {sin2x} {sin10x} using sin2x formula
=RHS
13.(cos2x)^2 - (cos6x)^2 = sin4x sin8x
using trigonometry formula trigonometry identities
cosx - cosy = -2sin[(x+y)/2] sin[(x-y)/2]
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
finally use 2sinxcosx = sin2x
LHS =(cos2x)^2 - (cos6x)^2
={cos2x+cos6x} {cos2x-cos6x}
= { -2sin(8x/2)sin(-4x/2)} {2cos(8x/2)cos(-4x/2)}
= {-2sin4xsin(-2x)}{2cos4xcos(-2x)} {using sin(-x)= -sinx and cos(-x)=cosx}
={-2sin4x[-sin2x]}{2cos4xcos2x}
={2sin2xcos2x}{2sin4xcos4x} on regrouping
=sin4xsin8x
=RHS.
13.(cos2x)^2 - (cos6x)^2 = sin4x sin8x
using trigonometry formula trigonometry identities
cosx - cosy = -2sin[(x+y)/2] sin[(x-y)/2]
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
finally use 2sinxcosx = sin2x
LHS =(cos2x)^2 - (cos6x)^2
={cos2x+cos6x} {cos2x-cos6x}
= { -2sin(8x/2)sin(-4x/2)} {2cos(8x/2)cos(-4x/2)}
= {-2sin4xsin(-2x)}{2cos4xcos(-2x)} {using sin(-x)= -sinx and cos(-x)=cosx}
={-2sin4x[-sin2x]}{2cos4xcos2x}
={2sin2xcos2x}{2sin4xcos4x} on regrouping
=sin4xsin8x
=RHS.
3.3
12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x
17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution
19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution
21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution
22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
solution
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments