exercise 3.3 ncert cbse trigonometry 21
21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
using trigonometry formula trigonometry identities
sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
after grouping terms with 4x and 2x
LHS = [(cos4x+cos2x)+cos3x]/[(sin4x+sin2x)+sin3x]
={2cos(6x/2)cos(2x/2)+cos3x} / {2sin(6x/2)cos(2x/2) + sin3x}
={2cos3xcosx+cos3x} / {2sin3xcosx+sin3x}
={cos3x[2cosx+1]} /{sin3x[2cosx+1]}
=cos3x / sin3x
=cot3x = RHS
3.3
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution
21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution
22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
solution
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
miscellaneous
1.Prove that 2cos(pi/13)cos(9pi/13)+cos (3pi/13)+cos(5pi/13) = 0
solution
2. Prove that ( sin3x + sinx ) sinx + (cos3x - cosx) cosx = 0
solution
3. Prove that (cosx +cosy)^2 + ( sinx - siny )^2 = 4 { cos[(x+y)/2] }^2
solution
4. Prove that (cosx - cosy)^2 + ( sinx - siny )^2 = 4 { sin[(x-y)/2] }^2
solution
5.Show that sinx +sin3x+ sin5x +sin7x = 4cosx cos2x sin 4x
solution
6. Show that [sin7x+sin5x +sin9x+sin3x] / [cos7x+cos5x+cos9x+cos3x] = tan6x
solution
7. Prove that sin3x+sin2x-sinx = 4sin(x)cos(x/2)cos(3x/2)
solution
disclaimer:
There is no guarantee about the data/information on this site. You use
the data/information at your own risk. You use the advertisements
displayed on this page at your own risk.We are not responsible for the
content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments