Tuesday, July 21, 2020

exercise 3.3 ncert trigonometry question 19

exercise 3.3 ncert trigonometry question 17 and 19

17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x

using trigonometry formula trigonometry identities

sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]

cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]



LHS =[sin5x + sin3x] / [cos5x+cos3x]

=[2sin(8x/2)cos(2x/2)] / [2cos(8x/2)cos(2x/2)]

= [2sin4xcosx]/[2cos4xcosx]

=sin4x/cos4x

=tan4x


19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x

using trigonometry formula trigonometry identities

sinx + siny =2sin[(x+y)/2] cos[(x-y)/2]

cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]

after rearrangement, after interchanging the terms to make the bigger angle first

LHS = [sinx + sin3x] / [cosx+cos3x]

=[sin3x + sinx] / [cos3x+cosx]

=[2sin(4x/2)cos(2x/2)] / [2cos(4x/2)cos(2x/2)]

=[2sin2xcosx] / [2cos2xcosx]

=sin2x/cos2x

=tan2x

=RHS

3.3

17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution

19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution

20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution

21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution


22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution

23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
 solution


24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution 

25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
 solution


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work 


No comments:

Post a Comment

please leave your comments