use the substitution lnx= u or x = e^u
then use the std. formula for integral of {e^(ax)} sinbx given here
or
use integration by parts and then manipulation as in this example-----------------------------------------------------------
please leave your comments below
------------------------------------------------------------
index of math problems
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
change
<!-- Begin: AdBrite, Generated: 2008-10-10 12:13:44 -->
<script type="text/javascript">
var AdBrite_Title_Color = '0000FF';
var AdBrite_Text_Color = '000000';
var AdBrite_Background_Color = 'FFFFFF';
var AdBrite_Border_Color = 'CCCCCC';
var AdBrite_URL_Color = '008000';
try{var AdBrite_Iframe=window.top!=window.self?2:1;var AdBrite_Referrer=document.referrer==''?document.location:document.referrer;AdBrite_Referrer=encodeURIComponent(AdBrite_Referrer);}catch(e){var AdBrite_Iframe='';var AdBrite_Referrer='';}
</script>
<script type="text/javascript">document.write(String.fromCharCode(60,83,67,82,73,80,84));document.write(' src="http://ads.adbrite.com/mb/text_group.php?sid=865012&zs=3330305f323530&ifr='+AdBrite_Iframe+'&ref='+AdBrite_Referrer+'" type="text/javascript">');document.write(String.fromCharCode(60,47,83,67,82,73,80,84,62));</script>
<div><a target="_top" href="http://www.adbrite.com/mb/commerce/purchase_form.php?opid=865012&afsid=1" style="font-weight:bold;font-family:Arial;font-size:13px;">Your Ad Here</a></div>
<!-- End: AdBrite -->
If x+18y+c=0 is a normal to y = 5x ² -12x + 1 , find the value of c
let x+18y+c=0 be a normal at (h,k) on the curve y = 5x ² -12x + 1
implies k = 5h ² - 12h+ 1 -------------(1)
y = 5x ² -12x + 1
diff. w.r.t.x dy/dx = 10x-12
slope of normal at (h,k) = -1 / (dy/dx) = -1 / (10h-12)
also slope of the given line x+18y+c=0 is -1/18
therefore -1 / (10h-12) = -1/18
solving 10h-12 = 18 or h =3
using equation(1) k = 5*3 ² - 12*3+ 1 = 10
therefore h=3 , k=10
x+18y+c=0 is a normal at (3,10) and should be satisfied by (3,10)
3 + 18*10 +c =0
c= -183
------------------------------------------------------------
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments