cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx
ncert 11th trigonometry, exercise 3.3
11. prove that cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx
using trigonometry formula trigonometry identities
cosx + cosy =2cos[(x+y)/2] cos[(x-y)/2]
LHS = cos[(3pi/4)+x] - cos[(3pi/4)-x]
=2cos[2(3pi/4)/2] cos[2x/2]
=2cos[(3pi/4)] cosx
=2{-1 /(-sqrt(2)) } cosx [cosx is negative in second quadrant]
= (-sqrt(2))sinx
=RHS
10. prove that
sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx
using trigonometry formula trigonometry identities
cosAcosB +sinAsinB = cos(A-B)
A =(n+2)x
B=(n+1)x
LHS = sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x]
=cos[A-B] FORM
=cos[(n+2)x - (n+1)x ]
=cosx =RHS
6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)
using trigonometry formula trigonometry identities
cosAcosB - sinAsinB = cos(A+B)
A= [(pi/4)-x]
B= [(pi/4)-y]
LHS = cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y]
= cos[A+B] form
= cos[[(pi/4)-x]+[(pi/4)-y]]
=cos[ 2(pi/4)-(x+y)]
=cos[ (pi/2)-(x+y)]
=sin[x+y] = RHS using cos [ (pi/2)-A] =sinA
sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx
using trigonometry formula trigonometry identities
cosAcosB +sinAsinB = cos(A-B)
A =(n+2)x
B=(n+1)x
LHS = sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x]
=cos[A-B] FORM
=cos[(n+2)x - (n+1)x ]
=cosx =RHS
6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)
using trigonometry formula trigonometry identities
cosAcosB - sinAsinB = cos(A+B)
A= [(pi/4)-x]
B= [(pi/4)-y]
LHS = cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y]
= cos[A+B] form
= cos[[(pi/4)-x]+[(pi/4)-y]]
=cos[ 2(pi/4)-(x+y)]
=cos[ (pi/2)-(x+y)]
=sin[x+y] = RHS using cos [ (pi/2)-A] =sinA
3.3
6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)
solution
10. prove that sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx
solution
6. prove that cos[(pi/4)-x]cos[(pi/4)-y]- sin[(pi/4)-x]sin[(pi/4)-y] = sin(x+y)
solution
10. prove that sin[(n+1)x]sin[(n+2)x] +cos[(n+1)x]cos[(n+2)x] =cosx
solution
11. prove that cos[(3pi/4)+x] - cos[(3pi/4)-x] = (-sqrt(2))sinx
12.(sin6x)^2 - (sin4x)^2 = sin2x sin10x
solution
13.(cos2x)^2 - (cos6x)^2 = sin4x sin8x
solution
14. Prove that sin2x+2sin4x+sin6x = 4[(cosx)^2]sin4x
solution
15.prove that cot4x[sin5x+sin3x]=cotx[sin5x-sin3x]
solution
16.Prove that [cos9x -cos5x] / [sin17x - sin3x ] = -sin2x / cos10x
solution
13.(cos2x)^2 - (cos6x)^2 = sin4x sin8x
solution
14. Prove that sin2x+2sin4x+sin6x = 4[(cosx)^2]sin4x
solution
15.prove that cot4x[sin5x+sin3x]=cotx[sin5x-sin3x]
solution
16.Prove that [cos9x -cos5x] / [sin17x - sin3x ] = -sin2x / cos10x
solution
17 prove that [sin5x + sin3x] / [cos5x+cos3x] = tan4x
solution
18. Prove that [sinx -siny] / [cosx +cosy] = tan[(x-y)/2]
solution
19.prove that [sinx + sin3x] / [cosx+cos3x] = tan2x
solution
20. Prove that [sinx - sin3x] / [ (sinx)^2 - (cosx)^2 ] = 2sinx
solution
21.Prove that [cos4x+cos3x+cos2x]/[sin4x+sin3x+sin2x] = cot3x
solution
22.Prove that cotx cot2x -cot2xcot3x-cot3xcotx = 1
solution
23. tan4x = { 4tanx{ 1 - [(tanx)^2] } } / { 1 - 6 [(tanx)^2] + [(tanx)^4]}
solution
24. Prove that cos4x = 1-8[(sinx)^2][(cosx)^2]
solution
25. Prove that cos6x = 32[cosx]^6 -48[cosx]^4 +18[cosx]^2 -1
solution
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work
No comments:
Post a Comment
please leave your comments