auto ad

Friday, August 7, 2020

Find a , b and n in the expansion of (a+b)^n if the first three terms in the expansion are 729, 7290, 30375

ncert cbse chapter 8 binomial theorem miscellaneous exercise

 1.Find a , b and n in the expansion of (a+b)^n if the first three terms in the expansion are 729, 7290, 30375

 

(a+b)^n  = (a^n) + C(n,1)[a^(n-1)][b]++ C(n,2)[a^(n-2)][b^2] +...+(b^n)

using the given data and also 

C(n,1) = n

C(n,2) = {n(n-1)}/{2}


we get 

a^n = 729--------------------(1)

n[a^(n-1)][b] = 7290--------------------(2)

{n(n-1)}/{2}*[a^(n-2)][b^2] = 30375---------------(3)


(2)/(1) gives {nb} / {a} = 10 ----------------------(4)

(3)/(2) gives {(n-1)b}/{2a} = {25} / {6}-----------(5)

 

(5)/(4)  gives {n-1}/{2n} = {5}/{12}


therefore 12(n-1)=5(2n)

12n-12 =10n

12n-10n =12

2n=12

n=6 

use in (1)

a^6 = 729

a = 3

use these values of n and a in (4)

{6*b}/{3} = 10

gives b =5


disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks  using tracking cookies



 

No comments:

Post a Comment

please leave your comments