auto ad

Wednesday, August 12, 2020

find the value of [(a^2)+sqrt{(a^2)-1}]^4 + [(a^2)-sqrt{(a^2)-1}]^4

 ncert cbse chapter 8 binomial theorem miscellaneous exercise    


 6.find the value of [(a^2)+sqrt{(a^2)-1}]^4 + [(a^2)-sqrt{(a^2)-1}]^4 

using expansion with 

C(4,1) =4=C(4,3)

C(4,2)=6

(x+y)^4 = (x^4)+4(x^3)(y)+6(x^2)(y^2)+4(x)(y^3)+(y^4)

(x-y)^4 = (x^4)-4(x^3)(y)+6(x^2)(y^2)-4(x)(y^3)+(y^4)

adding the two expansions 

(x+y)^4 +(x-y)^4= 2[(x^4) +6(x^2)(y^2) +(y^4) ]

use x =(a^2) y = sqrt{(a^2)-1}

[(a^2)+sqrt{(a^2)-1}]^4 + [(a^2)-sqrt{(a^2)-1}]^4

 = 2[{(a^2)^4}+6{(a^2)^2}{[ sqrt{(a^2)-1}]^2} +{[ sqrt{(a^2)-1}]^4}]

 =2[ (a^8) +6(a^4)((a^2)-1) +{(a^2)-1}^2 ]

=2 [ (a^8) +6(a^6) -6(a^4) +{(a^4) -2(a^2)+1} ]

=2[ (a^8) +6(a^6) -5(a^4)-2(a^2)+1  ]

=2(a^8) +12(a^6) -10(a^4)- 4(a^2)+2

chapter 8 binomial theorem miscellaneous exercise

 1.Find a , b and n in the expansion of (a+b)^n if the first three terms in the expansion are 729, 7290, 30375

solution

 

2.  Find a if the coefficients of (x^2)  & (x^3) in the expansion of {(3+ax)^9} are equal 

solution

  3.find the coefficient of {x^5} in the expansion of{(1+2x)^6}{(1-x)^7}

solution

 

5.evaluate { (sqrt(3) + sqrt(2))^6 } - { (sqrt(3) - sqrt(2))^6 }

solution 

 6.find the value of [(a^2)+sqrt{(a^2)-1}]^4 + [(a^2)-sqrt{(a^2)-1}]^4 

solution

 

7.find an approximate value of (0.99^5) using the first three terms of its expansion

solution  

exercise 8.2

Q8) Find the  middle terms in the expansion of [(x/3)+9y)]^10

solution  

disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Your internet usage may be tracked by the advertising networks  using tracking cookies

 

 

No comments:

Post a Comment

please leave your comments